如何在 GPU 上优化卷积
备注
单击 此处 下载完整的示例代码
作者:Haichen Shen
本教程演示了如何在 TVM 中编写高性能卷积实现。以正方形大小的输入张量和滤波器为例,假设卷积输入的 batch 较大。在此示例中,使用不同的布局来存储数据,以实现更好的数据局部性。缓冲区布局是 HWCN,分别代表高度、宽度、通道、batch。
准备和算法
对具有 256 个通道和 14 x 14 维度的输入张量使用固定大小。batch size 为 256,卷积过滤器包含 512 个大小为 3 x 3 的过滤器, 用步长为 1 和 padding size 为 1 进行卷积。以下代码定义了 TVM 中的卷积算法。
import numpy as np
import tvm
from tvm import te
# 输入和过滤器的大小
batch = 256
in_channel = 256
out_channel = 512
in_size = 14
kernel = 3
pad = 1
stride = 1
# 算法
A = te.placeholder((in_size, in_size, in_channel, batch), name="A")
W = te.placeholder((kernel, kernel, in_channel, out_channel), name="W")
out_size = (in_size - kernel + 2 * pad) // stride + 1
# Pad 输入
Apad = te.compute(
(in_size + 2 * pad, in_size + 2 * pad, in_channel, batch),
lambda yy, xx, cc, nn: tvm.tir.if_then_else(
tvm.tir.all(yy >= pad, yy - pad < in_size, xx >= pad, xx - pad < in_size),
A[yy - pad, xx - pad, cc, nn],
tvm.tir.const(0.0, "float32"),
),
name="Apad",
)
# 创建归约变量
rc = te.reduce_axis((0, in_channel), name="rc")
ry = te.reduce_axis((0, kernel), name="ry")
rx = te.reduce_axis((0, kernel), name="rx")
# 计算卷积
B = te.compute(
(out_size, out_size, out_channel, batch),
lambda yy, xx, ff, nn: te.sum(
Apad[yy * stride + ry, xx * stride + rx, rc, nn] * W[ry, rx, rc, ff], axis=[ry, rx, rc]
),
name="B",
)